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Synopsis Despite an explosion in the amount of sequence data, phylogenomics has failed to settle controversy regarding

some critical nodes on the animal tree of life. Understanding relationships among Bilateria, Ctenophora, Cnidaria,

Placozoa, and Porifera is essential for studying how complex traits such as neurons, muscles, and gastrulation have

evolved. Recent studies have cast doubt on the historical viewpoint that sponges are sister to all other animal lineages

with recent studies recovering ctenophores as sister. However, the ctenophore–sister hypothesis has been criticized as

unrealistic and caused by systematic error. We review past phylogenomic studies and potential causes of systematic error

in an effort to identify areas that can be improved in future studies. Increased sampling of taxa, less missing data, and a

priori removal of sequences and taxa that may cause systematic error in phylogenomic inference will likely be the most

fruitful areas of focus when assembling future datasets. Ultimately, we foresee metazoan relationships being resolved with

higher support in the near future, and we caution against dismissing novel hypotheses merely because they conflict with

historical viewpoints of animal evolution.

Introduction

Phylogeny is the cornerstone of comparative biology,

and interpretations of phenotypic evolution hinge on

accurate hypotheses of organismal relationships

(Felsenstein 1985). Transcriptomic and genomic se-

quences offer a nearly overwhelming source of infor-

mation for inferring relationships, with some studies

employing hundreds (Kocot et al. 2011; Bond et al.

2014; Cannon et al. 2014; Fernández et al. 2014;

Moroz et al. 2014; Struck et al. 2014; Wickett et al.

2014) or thousands (Hejnol et al. 2009; Jarvis et al.

2014; Sharma et al. 2014) of genes. Despite great

potential, phylogenomics has thus far failed to con-

fidently resolve relationships of many animal groups

(Dunn et al. 2014). Inferring relationships among

major metazoan lineages (i.e., Bilateria, Ctenophora,

Cnidaria, Placozoa, and Porifera) has been particu-

larly difficult, with numerous recent studies recover-

ing conflicting phylogenetic topologies (Fig. 1)

(Dunn et al. 2008; Hejnol et al. 2009; Philippe

et al. 2009, 2011; Pick et al. 2010; Nosenko et al.

2013; Ryan et al. 2013; Moroz et al. 2014;

Borowiec et al. 2015; Whelan et al. 2015). This hin-

ders our ability to study evolution of complex traits

associated with the transition from unicellularity to

multicellularity in early animals and their ancestor.

Of particular interest is evolution of neurons and

complex neural systems. Communication between

cells is integral for multicellular organisms (Kaiser

2001), and neurons provide a rapid communication

network for most animals (Moroz 2009).

Historically, the presence of neurons has been used

as a morphological feature uniting ctenophores, cni-

darians, and bilaterians (Ax 1996), but some phylo-

genomic studies have conflicted with this hypothesis

and recovered ctenophores as the earliest branching

lineage on the animal tree of life (Dunn et al. 2008;

Hejnol et al. 2009; Nosenko et al. 2013; Ryan et al.
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2013; Moroz et al. 2014). Placement of ctenophores

sister to all other animals would imply either parallel

evolution of neural systems or extensive loss in

sponges and placozoans (Ryan et al. 2013; Moroz

et al. 2014). Pushback against the ctenophore–sister

hypothesis has raised the possibility that systematic

error caused ctenophores to be recovered sister to

other animals in some of the aforementioned studies

(Pick et al. 2010; Philippe et al. 2011; Nosenko et al.

2013). In order to move toward resolving metazoan

relationships, pitfalls of current methods and ideal

paths forward must be identified and addressed.

In recent years, systematists have faced many the-

oretical and methodological challenges associated

with analyzing high-throughput sequencing data for

phylogenetic inference (Nekrutenko and Taylor 2012;

Chan and Ragan 2013; van Djik et al. 2014), and a

major bottleneck for modern phylogenetic studies is

the analysis of data, rather than the generation of

sequences. Modern phylogenomics requires a new

set of expertise and methodologies compared with

phylogenetic studies with only one or a few genes.

Analysis of sequences now requires multifaceted bio-

informatic pipelines that piece together high-

throughput assembly of sequences (El-Metwally

et al. 2013; Nagarajan and Pop 2013), identification

of orthologous sequences from incomplete transcrip-

tomic or genomic data (Koonin 2005; Pearson and

Sierk 2005; Dutilh et al. 2007), removal of potential

causes of systematic error (Felsenstein 1978;

Weisburg et al. 1989; Yang 1996), and, finally, phy-

logenetic inference (Lartillot et al. 2013; Stamatakis

2014). Determining which methods are the most ap-

propriate to employ for these steps not only requires

theoretical considerations, but also practical consid-

erations given computational limitations.

Here, we examine data and methodologies that

have led to support for different conflicting hypoth-

eses of relationships among major metazoan lineages

and consider future directions to resolve metazoan

phylogeny. Analyses recovering non-traditional meta-

zoan relationships have raised concerns that system-

atic error, as a result of poor quality of the data, or

misapplied methods, has erroneously resulted in the

inference of ctenophores sister to other metazoans.

However, the assumed placement of sponges sister to

other animals has not been as critically examined

(Halanych 2015), and recent evidence suggests that

even sponge choanocytes, a major morphological fea-

ture used to corroborate the sponge–sister hypothesis

(Nielsen 2008), may not be homologous to choano-

flagellates (Mah et al. 2014). Confident conclusions

about early metazoan phylogeny and the pattern of

the evolution of neurons cannot be made until a

single, robust hypothesis of animal phylogeny is

widely accepted. Biologists of all backgrounds

should understand potential causes of systematic

error and bioinformatic challenges associated with

phylogenomic inference. Such understanding will

promote an appreciation of how new and sometimes

controversial hypotheses of early animal evolution

have been generated and will be better resolved in

the future.

Potential sources of systematic error

At least eight phylogenomic studies have recovered

ctenophores as sister to other animals (Dunn et al.

2008; Hejnol et al. 2009; Nesnidal et al. 2013;

Nosenko et al. 2013; Ryan et al. 2013; Moroz et al.

2014; Borowiec et al. 2015; Whelan et al. 2015).

However, concerns have been raised that systematic

error, usually long-branch attraction (LBA;

Felsenstein 1978), a type of sequence-saturation

that randomizes phylogenetic signals, caused cteno-

phores to be incorrectly placed (Pick et al. 2010;

Philippe et al. 2011; Nosenko et al. 2013; Jékely

et al. 2015). Other potential sources of systematic

Fig. 1 Phylogenetic hypotheses of major metazoan lineages. (A) Traditional Porifera-sister hypothesis (Philippe et al. 2009, 2011; Pick

et al. 2010; Nosenko et al. 2013), (B) Ctenophora-sister hypothesis (Dunn et al. 2008; Hejnol et al. 2009; Nosenko et al. 2013; Ryan

et al. 2013; Moroz et al. 2014; Borowiec et al. 2015; Whelan et al. 2015), (C) Ctenophoraþ Porifera-sister hypothesis (Ryan et al.

2013).
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error include a limited sampling of taxa (Zwickl and

Hillis 2002; Heath et al. 2008), too few characters to

resolve relationships (Gatsey et al. 2007), misspecifi-

cation of the model (Lartillot et al. 2007; Philippe

et al. 2011; Straub et al. 2014), and misaligned se-

quences (Ogden and Rosenberg 2005). Sampling of

taxa and characters are critical considerations for

gathering data for any phylogenetic study.

Misspecification of the model occurs when the prob-

abilistic model of sequence evolution underlying

phylogenetic inference poorly fits empirical sequence

data. When sequences of a group of taxa are aligned

for any given gene, aligned positions are statements

of homology (Morrison and Ellis 1997) used in phy-

logenetic inference. Therefore, inaccurately aligned

regions can introduce error and noise (i.e., homo-

plasy) into those inferences. Whereas sampling of

taxa and characters are issues of experimental

design, misspecification of the model, alignments of

sequences, and saturated datasets usually are ad-

dressed by bioinformatics protocols.

Systematic error cannot be absolutely ruled out as

the reason ctenophores have been resolved as sister

to other animals even though both Ryan et al. (2013)

and Moroz et al. (2014) tried to control for such

error. Nonetheless, some have forcefully argued

(Pick et al. 2010; Philippe et al. 2011; Nosenko

et al. 2013) that systematic error must be the

reason ctenophores were resolved as sister to all re-

maining animals in some studies despite weak sup-

port for sponges sister to all remaining animals in

the above three studies. Nevertheless, future studies

must take steps to limit the potential influence of

error. The remainder of this article will focus on

possible sources of systematic error and how they

relate to recent and future analyses of relationships

among Ctenophora, Cnidaria, Placozoa, Porifera, and

Bilateria.

Sampling of taxa

Any phylogenetic study depends on adequate sam-

pling of taxa. Collecting non-bilaterian metazoan

species that represent sufficient phylogenetic diversity

can be difficult as some are rare or difficult/expensive

to collect. For example, most hexactinellid sponges

are found in deep-sea or polar habitats (Janussen

and Reiswig 2009). Tissue must also be appropriately

preserved, which is not a trivial consideration. Most

sequencing for phylogenomics currently utilizes RNA

for transcriptomic sequencing, but RNA quickly de-

grades as an animal dies. Therefore, tissue must be

flash-frozen or preserved with special fixatives like

RNAlater (Life Technologies Inc.) as soon as possible

after collection. Deep-sea animals, however, may not

survive the trip to the surface when being collected,

necessitating quick processing and appropriate pres-

ervation techniques. Field biologists must be aware

of these considerations to maximize the utility of

rarely collected animals for molecular work.

Further complicating the sampling of taxa is the

fact that the majority of animal species are extinct

(Simpson 1952; Raup 1986), and the common strat-

egy of adding more taxa to an analysis to increase

phylogenetic resolution will likely not work for some

non-bilaterian metazoan lineages. Several phyloge-

nomic studies have identified ctenophores as being

a long-branched taxon with high mutation rates

(Philippe et al. 2009, 2011; Osigus et al. 2013).

However, ctenophores likely underwent a relatively

recent radiation (Podar et al. 2001; Simion et al.

2015) and additional sampling will not considerably

shorten the branch leading to the most recent

common ancestor of extant ctenophores. A similar

problem exists for Placozoans. Trichoplax adhaerens

is the only nominal placozoan species, and other de-

scribed genetic lineages are all closely related (Pearse

and Voigt 2007; Eitel and Schierwater 2010; Eitel

et al. 2013), which makes breaking up the long

branch leading to modern-day Placozoans unlikely

in future studies.

Most phylogenomic studies of non-bilaterian

metazoans have used only one to four ctenophore

species (Dunn et al. 2008; Hejnol et al. 2009;

Philippe et al. 2009, 2011; Pick et al. 2010; Ryan

et al. 2013) but Moroz et al. (2014) included 11

species in one analysis. Compared with their phylo-

genetic analyses involving only three ctenophore spe-

cies, statistical support for the position of

ctenophores was lowest when all 11 ctenophore spe-

cies were included. However, the dataset with greater

sampling of ctenophores also used stricter criteria for

orthology than those applied to their other datasets,

which confounds interpretations of how important

increased sampling of ctenophore taxa was to phylo-

genetic inference. Nonetheless, decreased nodal sup-

port when more ctenophores were added raises the

question of whether the inferred position of cteno-

phores is real, or instead caused by systematic error

as a result of poor sampling of taxa. Although recent

phylogenomic studies have focused on the placement

of ctenophores, sampling of sponges and cnidarians

is just as important for determining relationships

among these taxa. Given the unstable placement of

sponges (i.e., sister or not; Table 1) and the debate

surrounding sponges’ monophyly (Philippe et al.

2009; Nosenko et al. 2013; Ryan et al. 2013; Moroz

et al. 2014; Riesgo et al. 2014) versus paraphyly

Metazoan phylogenomics 3



(Sperling et al. 2007; Nosenko et al. 2013; Osigus

et al. 2013), increased sampling of poriferans may

also be particularly fruitful for better resolution of

non-bilaterian metazoan relationships.

Sampling of non-metazoan taxa must also be con-

sidered so trees can be accurately rooted. Outgroups

allow characters to be polarized and the direction of

evolution from one character-state to another to be

determined through rooting the topology. Employing

only distantly related or rapidly evolving outgroups

can cause LBA artifacts (Philippe et al. 2005; Heath

et al. 2008; Rota-Stabellia and Telford 2008). The

choice of outgroup can be most problematic when

the sister group is unknown, but choanoflagellates

are widely accepted as the sister lineage to metazoans

with Filasterea, Ichthyosporea, and Fungi also being

closely related (King et al. 2008; Suga et al. 2013;

Cavalier-Smith et al. 2014). Philippe et al. (2009),

Ryan et al. (2013), and Moroz et al. (2014) explored

how topologies were affected by different outgroup-

sampling schemes, but this was primarily done to

assess whether LBA was affecting phylogenetic infer-

ence rather than to determine an ideal set of out-

group taxa for best inferring animals’ relationships.

Notably, Philippe et al. (2009) recovered weaker sup-

port for a sister relationship between ctenophores

and cnidarians with denser outgroup-sampling, but

support was identical for sponges sister to all other

animals under both schemes. Ryan et al. (2013)

found that support for recovered relationships

varied with different sampling of the outgroup, but

inconsistent differences among methods of inference

and of sampling characters make generalizing about

effects of outgroup-sampling difficult. Despite chal-

lenges associated with the sampling of taxa, analyses

that fully resolve early metazoan lineages will no

doubt have more extensive sampling than in past

studies.

Sampling of characters

Early phylogenomic studies on the earliest branches

of the metazoan phylogeny relied heavily on ex-

pressed sequence tags via Sanger sequencing of

cDNA libraries (Dunn et al. 2008; Hejnol et al.

2009; Philippe et al. 2009). Subsequent studies uti-

lized 454 and Illumina high-throughput sequencing

technologies (Nosenko et al. 2013; Ryan et al. 2013;

Table 1 Character-sampling schemes, substitution model employed in phylogenomic inference, and the hypothesized sister lineage to all

other extant metazoans in past phylogenomics studies

Dataset Genes

Gene

occupancy

(%)

Missing data

including

gaps (%) Taxa

Total

number

of sites

Substitution

modela
Inferred sister

lineage

Dunn et al. (2008) 150 49 57 77 21,152 WAG & CAT Ctenophora

Philippe et al. (2009) 128 81 27 55 30,257 CAT Porifera

Hejnol et al. (2009) full dataset 1487 19 84 94 270,580 RTREV Ctenophora

Hejnol 844 genes 844 25 80 94 153,925 RTREV Ctenophora

Hejnol 330 genes 330 33 73 94 55,594 RTREV Ctenophora

Hejnol 50 genes 50 50 56 94 7467 RTREV Poriferab

Nosenko et al. (2013) full datasetc 122 85 28 71 23,799 CAT Porifera

Nosenko non-ribosomalc 88 78 27 71 14,612 CAT Ctenophora

Nosenko ribosomalc 35 75 30 71 9187 CAT Porifera

Ryan et al. (2013) ‘‘genome’’c 242 88 19 19 104,840 GTR & CAT Ctenophora or

Ctenophoraþ Porifera

Ryan et al. (2013) ‘‘EST’’c 406 52 58 70 88,384 GTR & CAT Ctenophora

Moroz et al. (2014) large dataset 586 51 45 44 170,871 WAG Ctenophora

Moroz et al. (2014) more taxa 115 53 52 60 22,772 WAG Ctenophora

Whelan et al. (2015) 89–251 71–82 35–44 60–76 23,680–81,008 Partitioned

AA models & CAT

Ctenophora

Borowiec et al. (2015)

‘‘best108 matrix’’

108 84 16 36 41,808 Partitioned

AA models & CAT

Ctenophora

aAnalyses using the CAT model were done with PhyloBayes. All others were done in RAxML.
bSupport was low and sponges were paraphyletic.
cAll outgroups included.
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Moroz et al. 2014), which generate hundreds of

thousands to millions of sequencing reads.

Transcriptomic sequencing, particularly on Illumina

platforms, is currently the most common method for

generating large amounts of data for phylogenomic

inference (Johnson et al. 2013; Bond et al. 2014;

Fernández et al. 2014; Lemer et al. 2015), although

whole-genome sequencing will likely become more

common in coming years (e.g., Jarvis et al. 2014).

Many past phylogenomic datasets used to infer meta-

zoan relationships have had large amounts of missing

data (Table 1), owing to the shotgun nature of se-

quencing technologies and differential expression of

genes in different tissue used for RNA extractions.

Missing data are known to affect phylogenetic infer-

ence (Lemmon et al. 2009; Roure et al. 2013), but

phylogenomic data matrices have continuously seen

a decrease in the amount of missing data due to

high-throughput sequencing. Thus, future studies

should benefit from fewer missing data as sequencing

technologies continue to improve.

Of the most recent phylogenomic studies focusing

on non-bilaterian metazoan relationships, that of

Nosenko et al. (2013) had the smallest amount of

data overall but also the smallest amount of missing

data (Table 1). They analyzed datasets with the

number of genes ranging from 35 to 122 and the

number of amino-acid (aa) positions ranging from

9187 to 22,975. Nosenko et al. (2013) also analyzed

non-ribosomal genes (35 genes, 9187 aa) and ribo-

somal genes (87 genes, 14,615 aa) separately, which

appeared to have the greatest affect on phylogenetic

inference as ctenophores were recovered sister to cni-

darians in all analyses except when ribosomal protein

genes were excluded. Ryan et al. (2013) employed

two character-sampling schemes, one with 242

genes and 104,840 aa positions and one with 406

genes and 88,384 aa positions; the latter had many

more missing data (Table 1). However, non-bilater-

ian relationships recovered by Ryan et al. (2013) ap-

peared to be more influenced by substitution model

and phylogenetic method (i.e., maximum likelihood

[ML] with the site-homogenous general time rever-

sible (GTR) model versus Bayesian inference [BI]

with the site-heterogeneous CAT model) and by

taxon-sampling rather than character-sampling.

Moroz et al. (2014) had two primary datasets, one

with 586 genes and 170,871 amino acids and one

with 114 genes and 22,722 amino acids. Ryan et al.

(2013) and Moroz et al. (2014) recovered cteno-

phores as sister to all other animals, but there was

much lower support for critical nodes in their smal-

ler datasets. In all three studies, differences in char-

acter-sampling were influenced by taxon-sampling

(e.g., choice of outgroup) as fewer missing data

were accompanied by a reduced sampling of taxa.

Saturation

Mutational saturation is also a concern for studies of

deep evolutionary events. Sequence-saturation occurs

when genes have undergone enough mutations be-

tween speciation events that observed genetic dis-

tances underestimate actual genetic distances, which

can introduce homoplasy into sequence data. This

process essentially randomizes sequences, obscuring

phylogenetic signal. LBA, a special case of saturation,

has been implicated as a reason ctenophores have

been resolved as sister to all other animals

(Philippe et al. 2011; Nosenko et al. 2013). LBA

occurs when two rapidly evolving, or highly diver-

gent, unrelated lineages are artificially drawn to each

other during phylogenetic reconstruction (Felsenstein

1978; Hendy and Penny 1989). This is often mani-

fested when an ingroup branch with a high substi-

tution rate (i.e., a long branch) is drawn to the base

of a tree toward outgroups (Bergsten 2005).

Ctenophores tend to have long branches in molecu-

lar phylogenies so LBA seems like a plausible expla-

nation for their recovery at, or near, the base of

Metazoa. However, long branches toward the base

of a tree may reflect real relationships.

Nosenko et al. (2013) noted higher saturation

rates in their dataset of non-ribosomal genes com-

pared with their ribosomal dataset and used this ob-

servation to justify placing more credibility upon the

ribosomal dataset that recovered ctenophores as

sister to cnidarians over the alternative finding of

ctenophores as the sister lineage to other animals.

Rather than relying too heavily on a single class of

gene that happens to be less saturated than others,

two alternative approaches would be to remove the

most saturated genes regardless of their class or

choose genes that produce individual gene trees

with the highest average bootstrap support (see

Salichos and Rokas 2013). For example, studies on

arachnid (Sharma et al. 2014), arthropod (Regier

et al. 2008), echinoderm (Telford et al. 2013), eu-

karyote (Hampl et al. 2009), and non-bilaterian

animal (Borowiec et al. 2015; Whelan et al. 2015)

relationships have ranked genes by evolutionary

rate to remove the most saturated genes, and this

may be an ideal method for removing the most sat-

urated genes in future studies on metazoan relation-

ships. No matter the approach, datasets with more

signal and less noise will be essential for finally re-

solving the phylogenetic position of ctenophores.

Metazoan phylogenomics 5



Phylogenetics and conflicting tree
inferences

One of the most troubling and difficult to explain

conflicts in phylogenomic studies addressing the rel-

ative placement of cnidarians, ctenophores, placozo-

ans, sponges, and bilaterians is the difference

between hypotheses generated with ML and BI. At

their core, both approaches are model-based algo-

rithms, but ML is a frequentist approach

(Felsenstein 1973, 1981), whereas BI is, of course, a

Bayesian approach (Rannala and Yang 1996;

Huelsenbeck et al. 2001). As a Bayesian statistical

method, BI relies on prior distributions of probabil-

ity, which have been identified as a potential bias

(Pickett and Randle 2005; Yang and Rannala 2005;

Ekman and Blaalid 2011) that should probably be

more carefully considered than typically occurs

(Brown et al. 2010; Rannala et al. 2012). Bayesian

methods also employ Markov Chain Monte Carlo

(MCMC) approaches (Gilks et al. 1996) to sample

a posterior distribution of trees rather than making a

direct estimation of the most likely tree as in ML.

The ability to use more complex substitution models

than those developed for ML is a major advantage to

BI, but this comes with a tradeoff as BI is often

prohibitively time consuming for phylogenomic

datasets.

RAxML (Stamatakis 2014), a ML approach, and

PhyloBayes (Lartillot et al. 2013), a BI approach,

are by far the most commonly used algorithms for

phylogenomic inference (Dunn et al. 2008; Hejnol

et al. 2009; Philippe et al. 2009; Kocot et al. 2011;

Struck et al. 2011; Nosenko et al. 2013; Ryan et al.

2013; Telford et al. 2013; Bond et al. 2014; Moroz

et al. 2014; Struck et al. 2014). RAxML is utilized for

its speed, whereas PhyloBayes is used because it is

the only program that implements the CAT model,

an infinite mixture model that does not assume site

homogeneity (Lartillot and Philippe 2005). As a site

heterogeneous model, the CAT model has many at-

tractive theoretical properties, but several studies

have found it to be too computationally intensive

for some phylogenomic datasets (e.g., Nesnidal

et al. 2010, Ryan et al. 2013; Moroz et al. 2014).

Generally, Bayesian analyses using the CAT model,

which has been shown to suppress LBA artifacts

(Latrillot et al. 2007), have recovered sponges as

sister to all remaining animals (Philippe et al. 2009,

2011; Pick et al. 2010; Nosenko et al. 2013, but see

Borowiec et al. 2015; Whelan et al. 2015). A sister

relationship between cnidarians and ctenophores has

only been recovered in analyses that used the CAT

model on datasets dominated by ribosomal protein

genes (Philippe et al. 2009; Nosenko et al. 2013), and

Whelan et al. (2015) showed ribosomal protein

genes, rather than the choice of model, was respon-

sible for this inferred relationship. However, Ryan

et al. (2013) also recovered support for ctenophores

sister to sponges in some of their analyses that em-

ployed the CAT model. ML analyses have generally

recovered ctenophores as sister to all other animals

(Dunn et al. 2008; Hejnol et al. 2009; Ryan et al.

2013; Moroz et al. 2014; Boroweic et al. 2015;

Whelan et al. 2015). Differences between topologies

recovered with ML and BI may result from differ-

ences in the underlying substitution model. However,

neither method has been consistent in their place-

ment of ctenophores, which suggests that topological

differences among phylogenies inferred with ML or

BI are more complicated than model misspecification

or LBA. In particular, how priors and MCMC chain-

length affect phylogenetic inference using the CAT

model has not been as thoroughly explored as has

BI using different models (e.g., those implemented in

MrBayes; Ronquist et al. 2012) and smaller datasets

(Brown et al. 2010; Ekman and Blaalid 2011; Rannala

et al. 2012).

Phylogenomic pipelines

Misapplied methods or poorly conceived bioinfor-

matic pipelines can also introduce error into phylo-

genomic analyses. Bioinformatic pipelines for

phylogenomics encompass procedures necessary for

obtaining multi-gene alignments for phylogenetics

from transcriptomic and genomic datasets. Failure

to accurately identify orthologs, correctly align se-

quences, and/or remove problematic taxa or genes

(e.g., those that may cause LBA) can introduce

error into phylogenetic inference. Therefore, under-

standing steps and considerations necessary for bio-

informatics in phylogenomics is essential for

assessing the quality of inferred metazoan

relationships.

Many bioinformatic procedures for phylogenomics

are custom pipelines that piece together different

tools to automate analyses that ultimately result in

phylogenetic hypotheses, but broadly applicable pipe-

lines have been published (e.g., AGALMA, Dunn

et al. 2013; Osiris, Oakley et al. 2014; phylogen-

omic_dataset_construction, Yang and Smith 2014).

Details vary from study to study, but almost every

pipeline follows the same basic processes (Fig. 2).

First raw data are either sequenced or retrieved

from public databases and assembled (see reviews

by Martin and Wang 2011; El-Metwally et al.

2013). Once assembled from raw nucleotide data,

6 N. V. Whelan et al.



genes and open reading frames can be predicted with

a variety of tools, including TransDecoder (transde-

coder.github.io) or blast searches against well-curated

databases (e.g., UniProt Consortium 2015) as in

AGALMA (Dunn et al. 2013). For taxa with well-

assembled genomes available, predictions of trans-

lated genes are often available from public databases.

Once genes are identified, sequences related by

speciation (i.e., orthology) and not by duplication

(i.e., paralogy) or lateral transfer of genes must be

distinguished as the inclusion of even a limited

number of paralogs can affect phylogenetic inference

(Struck 2013). A number of non-tree-based methods

exist for inferring which sequences from each taxon

are homologous. A relatively simple, but time con-

suming, approach is all-by-all blast searches followed

by Markov clustering (Enright et al. 2002), and a few

software utilities are available for performing this

type of clustering (Li et al. 2003; Lechner et al.

2011; Dunn et al. 2013; Yang and Smith 2014). As

the number of taxa increase, however, all-versus-all

blast searches can become computationally burden-

some as every sequence must be blasted against every

other sequence. An alternative approach is to use a

set of ‘‘core-orthologs’’ and retrieve homologous se-

quences from each taxon with HaMSTR (Ebersberger

et al. 2009). No matter the approach, the final result

of initial determination of homology is a set of genes

for phylogenetic analyses. Oftentimes, not every

taxon will have a sequence for each gene because

many assemblies of transcriptomes are incomplete.

Therefore, genes with sequences from too few taxa

Fig. 2 Flow chart of a typical phylogenomic bioinformatics pipeline. Boxes represent procedures, ovals represent input data, curved

boxes represent output data, and dotted lines represent optional steps that could be followed in future studies.
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are often discarded to minimize missing data. The

cut-off for too few taxa per gene is often arbitrary,

and many studies on metazoan relationships have

generated two or more datasets with different

amounts of missing data to explore how phyloge-

netic inferences may be influenced by missing data

(e.g., Hejnol et al. 2009; Ryan et al. 2013; Moroz

et al. 2014) (Table 1). The obvious trade-off to re-

moving genes with too few taxa is that the overall

amount of data is decreased (Roure et al. 2013).

After a set of genes has been assembled, each must

be aligned. Two popular alignment algorithms are

MAFFT (Katoh and Standley 2013; used by Ryan

et al. 2013; Moroz et al. 2014; Whelan et al. 2015)

and MUSCLE (Edgar 2004; used by Hejnol et al.

2009; Nosenko et al. 2013; Borowiec et al. 2015).

Fast evolving sites, or sites with many indels, can

be difficult or impossible to align accurately, espe-

cially at deep time-scales. Therefore, masking of

alignments should be performed to remove these

sites, which may introduce error, from phylogenetic

inference. Programs such as ALISCORE (Misof and

Misof 2009), TrimAl (Capella-Gutiérrez et al. 2009),

REAP (Hartmann and Vision 2008), and GBLOCKS

(Castresana 2000) are commonly used for trimming

these unalignable regions (e.g., all studies in Table 1),

which improves signal-to-noise ratios in empirical

alignments (Kück et al. 2010).

The above methods of determining homology are

not tree-based and likely contain paralogs. Therefore,

additional sequence-filtering is required. Once genes

are aligned, single gene trees can be generated and

tree-based orthology-assignment and paralogy-prun-

ing can be performed. Both FastTree-MP (Price et al.

2010) and RAxML (Stamatakis 2014) have been em-

ployed to generate single gene trees with FastTree-

MP being computationally fast but less robust than

RAxML. Gene trees are then used by programs

such as PhyloTreePruner (Kocot et al. 2013),

AGALMA (Dunn et al. 2013), or TreSpEx (Struck

2014) to identify and remove paralogs. Whereas

PhyloTreePruner and AGALMA are purely tree-

based, TreSpEx has an added blast search step to

aid in identifying putative paralogs, which may

offer more accuracy for identifying paralogs. This

blast step confirms sequences as paralogous when

different blast results are returned for the paralog

and other sequences (i.e., orthologs). Notably, tree-

based approaches can also help to remove exogenous

contamination of sequences, which is a potentially

important, but rarely considered, problem.

Once a set of orthologous genes has been identi-

fied, genes and taxa can be further screened to iden-

tify those that may cause systematic error. Programs

such as TreSpEx (Struck 2014) and BaCoCa (Kück

and Struck 2014) can be utilized to objectively iden-

tify genes and taxa that may cause LBA artifacts and

compositionally heterogeneous genes that could vio-

late assumptions of the model. Such a priori identi-

fication of problematic genes is rarely done (but see

Boroweic et al. 2015; Golombek et al. 2015; Whelan

et al. 2015), but some studies (Dunn et al. 2008;

Hejnol et al. 2009; Moroz et al. 2014) have identified

problematic taxa a posteriori by using leaf-stability

indices (Thorley and Wilkinson 1999) and the pro-

gram Phyutility (Smith and Dunn 2008).

Furthermore, Philippe et al. (2011) and Nosenko

et al. (2013) have emphasized using datasets with

relatively low levels of saturation, and future studies

may benefit from using a wide suite of genes with

low mutational saturation. By focusing on using bio-

informatics to identify orthologs and objectively

remove different types of potential systematic error

before phylogenetic inference (Fig. 2) future infer-

ence of metazoan relationships should more robustly

resolve the phylogeny than have recent studies.

Conclusions

High-throughput sequencing has ushered in a new

era of phylogenetics, but this has been accompanied

with new challenges to accurate inference of trees.

Many of these challenges are computational in

nature, but traditional considerations such as

taxon-sampling are still important. Instead of

making blanket statements about systematic error

influencing recent results, we argue that efforts

should focus on assembling more complete datasets

with greater sampling of taxa and characters, fewer

missing data, and less potential causes of error (e.g.,

saturated genes or paralogs). Moreover, we must

critically evaluate competing hypotheses with equal

rigor and not show preferences to hypotheses just

because they are traditional or commonly accepted.

Overcoming the challenges to inferring the earliest

splits in the animal tree of life appears within

reach, and a consensus viewpoint of early animal

evolution will likely materialize in the coming years.
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